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Abstract - The subcube allocation problem in faulty 
hypercubes is studied in this paper. An efficient method 
for forming the set of regular subcubes is proposed. A 
concept of irregular subcubes is then introduced to take 
advantage of the advanced switching techniques such as 
wormhole routing to increase the size of available sub¬ 
cubes. In this paper, a two-phase fault tolerant subcube 
allocation strategy is proposed. The first phase is the re¬ 
configuration process based on a modified subcube parti¬ 
tioning technique which finds the set of disjoint subcubes 
in the faulty hypercube. The second phase is to apply 
an existing fault-free subcube allocation strategy such as 
Buddy strategy to each disjoint subcube for assigning the 
fault-free available subcubes to the incoming tasks. The 
simulation results using Buddy strategy are also given. 

1 Introduction 
Hypercube architectures have received much attention 

due to their attractive properties, such as regularity, scal-
ibility, fault tolerance, and multitasking capability. As 
the size of the system grows, the probability of some pro¬ 
cessors or links failing in the system becomes larger. In 
a normal situation, many parallel programs are executed 
concurrently in different subcubes allocated by the host 
system. In this paper, we study how to allocate subcubes 
in a faulty hypercube and thus maintain the multitasking 
capability of the system. 

The main idea in assigning subcubes to incoming tasks 
is to avoid the interference among different tasks. This 
allocation problem of hypercubes has been studied in the 
literature. It was introduced by Chen and Shin [1]. Many 
other researchers use different approaches to tackle the 
problem[2, 3, 4]. Parallel algorithms for hypercube allo¬ 
cation have been developed in [5, 6]. The full subcube 
recognition ability and the efficiency of the allocation 
algorithms are the two main issues in hypercube alloca¬ 
tion. In this paper, we address this allocation problem 
for a system with faults. 

The straightforward method to accomplish fault toler¬ 
ant subcube allocation is to use the concept of exclusion. 
In other words, the faulty processors are treated as be¬ 
ing allocated permanently. To improve on the above ap¬ 
proach, Jokanovic et al. [7] propose a two-phase fault 
tolerant gray code (FTGC) strategy. FTGC is based 
on the observations that in a fault-free hypercube, the 
left half of the system becomes more fragmented than 
the right half since the GC strategy takes a first-fit ap¬ 
proach. Therefore in FTGC, the first phase is to find a 
parameter sequence [1, 7] such that the distribution of 
the faulty processors is concentrated to the left as much 
as possible. The second phase is to apply the same allo¬ 
cation and deallocation procedures of the GC strategy. 

We consider wormhole routing in addition to store-

and-forward routing. The wormhole routing employed in 
current commercial n-cube systems [8, 9] has the prop¬ 
erty that communication delay is insensitive to the phys¬ 
ical distance provided that there is no interference on the 
communicating links. We provide results both with and 
without wormhole routing property. It is assumed that 
all the faults are static and are detected before the recon¬ 
figuration algorithm starts. We assume only node faults 
and as a result, the links incident on the faulty nodes 
are also faulty. The faulty nodes can not perform either 
computation or communication. 

We present a modified subcube partitioning strategy 
and discuss how to construct the subcubes in a hyper¬ 
cube with two faults, since in the worst case, two faults 
in an n-cube are sufficient to destroy every possible reg¬ 
ular (n — l)-cubes. The technique first selects a regular 
(n— l)-cube and then the faulty processor in the selected 
(n — l)-cube is replaced with its corresponding healthy 
processor in the other (n — l)-cube. We then extend 
the results to more than 2 faults and show that at least 
\TJ■~\ faults can be tolerated while maintaining a fault-free 
(n — l)-cube [10]. We carry out extensive simulation to 
find the probability of a healthy (n — l)-cube in an n-
cube system as a function of the number of faults. It is 
shown that the modified subcube partitioning technique 
performs better than the method which only searches for 
the regular subcubes. 

Finally, we use the above modified subcube partition¬ 
ing technique to develop a two-phase fault-tolerant sub¬ 
cube allocation strategy. The first phase is to construct 
the set of disjoint subcubes in a faulty hypercube ac¬ 
cording to our modified subcube partitioning technique. 
The second phase is to apply an existing fault-free sub¬ 
cube allocation strategy such as Buddy strategy to each 
disjoint subcube. We simulate our fault tolerant alloca¬ 
tion strategy based on Buddy strategy. The simulation 
results show that the fault tolerant subcube allocation 
strategy based on the modified subcube partitioning is 
always better than the others. 

The rest of the paper is organized as follows. An ef¬ 
ficient construction method of regular subcubes is pro¬ 
posed in section 2. In section 3, the concept of irregular 
subcube is introduced. The modified subcube partition¬ 
ing technique is proposed to take advantage of wormhole 
routing technique. In section 4, a two-phase fault toler¬ 
ant subcube allocation strategy is presented. Simulation 
results are given in section 5. Finally, the concluding 
remarks are given in the last section. 

2 Construction of Regular Subcubes 
We first present an efficient method to construct the 

set of disjoint subcubes in a faulty hypercube. The con¬ 
struction of the set of disjoint regular subcubes (SDS) is 
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described in the procedure Form_SDS as follows. 
Procedure FormJ3DS(n, F) 
/* n: size of hypercube and F: set of faults */ 
begin 

d := Form_Regular-n_:Lcube(ri,.F,.Fo,^i); 
if |.Pol = 0 then 

SDS := SDS U *n-∙■-10*'■; 
else FormJ3DS(n - 1,FO); 
if \Fx\ = 0 then 

SDS := SDSU ^-^W; 
else FormJSDS(n -l,F↑); 

end 
The procedure Form_Regular_n_l_cube finds a dimen¬ 

sion d at which the n-cube is divided into two (n — 1)-
cubes such that the difference of the numbers of the 
faulty nodes in these two (n — l)-cubes is the maximum. 
If there is a tie, we will solve it as follows. Let Qi be the 
(n — l)-cube in which the number of faults is less than 
that in the other (n — l)-cube. We define the weight of a 
faulty processor in a hypercube as the number of neigh¬ 
bors which are also faulty and the system weight of the 
hypercube as the sum of the weights of all the faulty pro¬ 
cessors in the same hypercube. Let the system weight of 
Qi be W(. The dimension i is selected if Wj > Wj for 
all j 6 {0,.., n — 1}. If there is a tie for W, again, we 
arbitrarily select one dimension. 

Example 1: Fig.l shows a 4-cube containing 5 faulty 
nodes marked as shaded circles. Fig.l(a) and (b) illus¬ 
trates that the 4-cube is split into two 3-cubes at dimen¬ 
sion 3 and 1, respectively. Thus dimension 3 is selected 
for split instead of dimension 1 since the system weight 
of Qz is 2 which is greater than the system weight, 0, 
of Qi. After the dimension d is selected, the procedure 
FormJSDS is continued for each (n — l)-cube until the 
subcube contains no faults or all the processors in the 
subcube are faulty. 

The time complexity of FormJSDS is 0(|.F| × n3) since 
Form_Regular_ra_l_cube takes O(|F| × n2) time units for 
each dimension and there are n dimensions. We shall see 
that the split and select process does not guarantee to 
find the maximum set of subcubes (MSS) introduced in 
[2]. However, our method shown in procedure FormJSDS 
is efficient whereas finding the MSS is an NP-hard prob¬ 
lem. 

Let us analyze the worst case number of faults that 
procedure FormJSDS can tolerate in order to maintain a 
fault-free (n — m— l)-cube. After calling FormJSDS once, 
there exists an (n — l)-cube containing at most |_ 2 J 
faulty nodes. Thus FormJSDS can continue m times until 
the finally selected (n — m)-cube contains only one fault, 
when \F\ < 2m. Obviously, a fault-free (n — m— l)-cube 
is available in an n-cube containing |JF"| < 2m faults, for 
n>m + l. 

3 Construction of irregular subcubes 
We introduce the concept of irregular subcubes to take 

advantage of the advanced routing technology such as 
wormhole routing currently used in the commercial hy¬ 
percube multiprocessors [8, 9]. We define an irregular 
subcube as a hypercube in which there exists one or more 
pairs of logically adjacent nodes such that the physical 
distance between the adjacent nodes is more than one. 

14 15 

Figure 1: Construction of regular subcubes. 

Due to wormhole routing, the communication speed be¬ 
tween the logically adjacent nodes is the same as that 
between a set of physically adjacent nodes [8, 9]. A reg¬ 
ular subcube can be embedded on an irregular subcube 
such that the load of the embedding is one and dilation 
of the embedding is equal to the maximum physical dis¬ 
tance between the adjacent nodes. 

We will briefly review the modified1 subcube partition¬ 
ing technique which constructs the irregular subcubes. 
Modified Subcube Partitioning 
The idea of modified subcube partitioning comes from 
how to utilize the unused links to achieve fault tolerance 
in the faulty hypercube. We shall see that the modi¬ 
fied subcube partitioning technique tolerates more faults 
than only allocating regular subcubes. 

The procedure of constructing an irregular subcube 
based on modified subcube partitioning is as follows. An 
(n - l)-cube is first selected in the faulty hypercube. 
Then the faulty processor in the selected (n — l)-cube is 
replaced by the corresponding processor in the adjacent 
(n — l)-cube. The replacing processor and its neighbors 
must work since the links between it and its neighbors 
are utilized in the reconfiguration process. We shall see 
that this reconfiguration process works as long as the 
nodes which are two or fewer hops from any faulty node 
of the selected (n — l)-cube, are healthy. The worst case 
of two faults being at antipodal positions can be solved 
by the modified subcube partitioning technique. The 
following example shows how the technique is applied to 
the 2-fault case. 

Example 2: Assume there are two faulty nodes at 
antipodal positions of a 4-cube, i.e. (0000) and (1111) 
as shown in Fig.2. First, the node (1111) is replaced 
by node (0111). An irregular 3-cube is formed by the 
links shown as bold lines and the nodes marked with 
label 3 in parentheses. We call nodes 0011, 0101, and 
0110 as the intermediate nodes of the irregular 3-cube 
since they reside in between node 0111 and its logical 
neighbors of the irregular 3-cube. If the intermediate 
nodes can be used for forming other subcubes, then one 
2-cube consisting of nodes 0011, 0100, 0101, and 0110 

'called modified in order to distinguish the subcube partitioning 
technique proposed in [11] 
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Figure 3: Probabilities of fault-free 7-cubes in an 8-cube 
with faults. 

and two 0-cubes, 0001 and 0010, can be constructed as 
shown in the figure. However, if the intermediate nodes 
can not be used, the nodes 0001, 0010, and 0100 and the 
intermediate nodes can be used only as 0-cubes. 

We call the assumption that the intermediate pro¬ 
cessors can not be used to form other disjoint sub¬ 
cubes to be pessimistic. However, in all the commercial 
hypercubes[8, 9], there are two kinds of processing units 
in a processor node, namely, a communication unit and a 
computation unit. Inside the communication unit, there 
is an (n + 1) × (n + 1) crossbar switch. For a message, 
there will be no delay in the switch if no other message 
competes for the same output. Thus the intermediate 
nodes can still be used for other tasks as long as there 
are no shared links with other tasks. 

The time complexity of the modified subcube parti¬ 
tioning technique to find an (n — l)-cube is given as fol¬ 
lows. Let ƒ be number of faults. For any dimension i, 
the faulty nodes are divided into two groups. The faulty 
node whose ith bit value is zero is assigned to group 
1, otherwise it is assigned to group 2. Next, the Ham¬ 
ming distances of any fault in group 1 and any fault in 
group 2 are computed. Each Hamming distance takes n 
time units. There are at most O(ƒ2) Hamming distances. 
Thus the time complexity leads to O(f2 × n). 
Simulation Results 
Finding a fault-free (n — l)-cube in an n-cube containing 
a certain number of faulty nodes is the objective of our 
experiments. We carry out the simulation experiments 
by randomly generating faults in an n-cube. The proba¬ 
bilities of recognizing regular (n—l)-cubes (section 2) are 
compared with the probabilities of recognizing irregular 
and regular (n— l)-cubes based on the modified subcube 
partitioning technique. 

Fig.3 shows the comparison of probabilities of recog¬ 

nizing fault-free 7-cubes in an 8-cube with 2 to 22 faults. 
We can see that when the number of faulty nodes exceeds 
5, the probability of successful recognition of regular 7-
cubes drops under 50%. The probability of successful 
recognition of regular 7-cubes drops to 0 when the num¬ 
ber of faulty nodes reaches 10. However, the probability 
of successful recognition of fault-free irregular 7-cubes 
drops to 0 wh∙n the number of faulty nodes reaches 20. 

4 Subcube Allocation 
We have seen that |~|■] faults can be tolerated in the 

worst case by the modified subcube partitioning tech¬ 
nique while maintaining a fault-free (n — l)-cube. How¬ 
ever, the simulation results show that in the average case, 
more faults can be tolerated in larger systems. In this 
section, we propose a two-phase fault tolerant subcube 
allocation strategy which allocates the regular and irreg¬ 
ular subcubes. Since the faults do not occur as frequently 
as the processors are allocated in the system, we assume 
that the faults are detected and located before the con¬ 
struction starts. 

The first phase is the construction of the set of disjoint 
subcubes by the modified subcube partitioning tech¬ 
nique. The second phase is to sort the disjoint subcubes 
by their sizes in an increasing order and apply the exist¬ 
ing fault-free subcube allocation strategy such as Buddy 
strategy etc. to each disjoint subcube. When an in¬ 
coming task requesting a d-cube arrives in the system, 
starting from d-cube of the sorted disjoint subcubes, an 
available d-cube is searched and assigned to the incoming 
task. 
Subcube Construction Phase 
The algorithm Find_Disjoint_Subcubes for constructing 
the set of disjoint regular and irregular subcubes in a 
faulty hypercube is presented as follows. If the number 
of faults, |F|, is equal to the number of processors in 
the system then the process stops. Otherwise the pro¬ 
cedure Find_n_l_cube described later is called to find an 
available (n — l)-cube. If an (n — l)-cube exists, the 
set F of faulty processors is updated. The number of 
faults remains the same and the fault-free (n — l)-cube 
is put in Disjoint_Set. Finally, Find_Disjoint_Subcubes is 
called recursively with the dimension decreased by one. 
If an (n — l)-cube does not exist , then Split_n_cube is 
called to find a dimension at which the n-cube is split 
into two (n — l)-cubes such that the difference between 
the numbers of faulty processors in the two (n — l)-cubes 
is maximum. If the sets of faults in the two (n — l)-cubes 
are in Fo and F\, then two Find-Disjoint .Subcubes are 
called recursively for Fo and Fi. 
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Find_7i_l_cube first checks if there exists a regular 
(n — l)-cube, i.e. if there exists a dimension i such that 
the ith bit values of the addresses of faulty nodes are 
all O's or all l's. If there exists an (n — l)-cube, the 
dimension i is put in P which is the set of dimensions 
that have been processed. The found (n — l)-cube is 
then returned. Otherwise, the irregular (n - l)-cube is 
searched according to the modified subcube partition¬ 
ing technique. Hamming distances of addresses of any 
two faulty nodes are computed. For each pair of faulty 
nodes fi and fj whose Hamming distance is 1 or 2, we 
computes the dimensions spanning ƒt■ and fj and puts 
them into Dim_Set. If there exists a dimension i which 
does not belong to P and DimSet, then i is put in P 
and the (n — l)-cube is constructed by the procedure 
construct_n_l_cube(n, F, i) as follows. The n-cube is 
split into two (n — l)-cubes along the dimension i. One 
(n — l)-cube is selected and the faults in the selected 
(n — l)-cube is replaced with the healthy processors in 
the other (n —l)-cube. To update the set of faults, F, the 
ith bits of the addresses of faults in the selected (n — 1)-
cube is complemented. The following example illustrates 
the construction process of procedure Find_n_l_cube. 

Example 3: Based on Fig.2, there are two faults, 0 and 
15 in the 4-cube. There is no regular 3-cube available 
since the two faults are at antipodal positions. Since 
the Hamming distance between the two faults is 4, any 
dimension from 0 to 3 can be selected for constructing 
the irregular 3-cube by procedure construct_n_l_cube. 

When Find_Disjoint_Subcubes finishes, Disjoint_Set 
contains all the fault-free disjoint subcubes. The last 
step is to sort the Disjoint_Set by the size of the sub¬ 
cubes. 
Subcube Allocation Phase 
We gives the procedure FT_Subcube_Allocation, for fault 
tolerant subcube allocation as follows. The procedure 
checks each subcube in the set of disjoint subcubes, Dis-
jointJSet, from the smallest subcube to the largest sub¬ 
cube and uses the existing fault-free subcube allocation 
strategy to allocate an available subcube from the set 
of disjoint subcubes. The deallocation procedure does 
not change except that the subcubes are released to the 
disjoint subcube from which they were allocated. 

Procedure FT_Subcube_Allocation(n, d) 
/* d: size of requested subcube*/ 
begin 

for all Qi G DisjointJSet, from i = 1 to 
\DisjointSet\ do 

if \Qi\ > dthen 
Qd := Fault_Free_Subcube_Alloc(<3,∙, d); 
if Qd ≠ Null then return (Qd)\ 

endif 
endfor 
return (Null); 

end 
Example 4: Assume there are two faults in a 4-cube 

as in Fig.2. Procedure Find_Disjoint_Subcubes returns 
DisjointJSet = { ‰ ‰ ‰ Q a } or {Qo,Qo,Qo,Qo,Qi,Q3} 
if the intermediate nodes such as nodes 0011, 0101, and 
0110 can not be used for forming subcubes except being 
used as 0-cubes. Take Buddy strategy as the dedicated 
allocation strategy. Assume that the incoming task se¬ 
quence is {1,1,0,3}. For former case, two 1-cubes in Qi, 

a 0-cube in QO, and a 3-cube in Qo, will be granted. How¬ 
ever, for the later case, a 1-cube in Qi, a 1-cube in Qz, 
and a 0-cube in Qo are granted. The incoming task re¬ 
questing a 3-cube needs to wait for the other tasks to 
finish. 
5 Subcube Allocation Simulation 

Performance based on the Buddy and single GC 
strategies is studied. We select the Buddy and single 
GC strategies because Buddy strategy is currently em¬ 
ployed in the commercial hypercube multiprocessors and 
the single GC strategy is simple to implement. The fol¬ 
lowing allocation strategies are adopted in the simula¬ 
tion. 

1. the straightforward regular allocation strategy 
which treats the faulty processors as being allocated 
permanently, 

2. the modified regular subcube allocation strategy 
which is based on the procedure Form_SDS proposed 
in section 2. 

3. irregular subcube allocation strategy which is 
based on our two-phase fault tolerant subcube al¬ 
location strategy in section 4, 

4. pessimistic irregular subcube allocation strategy 
which is same as the irregular except that the inter¬ 
mediate nodes can not be used to form other disjoint 
subcubes. However, the intermediate nodes can be 
assigned as individual 0-cubes. 

The simulations on the two systems without any fault 
are also conducted for comparison. One follows the ex¬ 
isting allocation strategy (called no fault) and the other 
is the two-phase fault-free allocation strategy called no 
fault split. The latter is motivated by the observation 
[7] that the left half of the system is more fragmented 
than the right half in the first-fit allocation approaches. 
The first phase is to split the n-cube into a set of sub¬ 
cubes, one fc-cube for 1 < k < n — 1 and two 0-cubes. 
The second phase is the same as the one for irregular sub¬ 
cubes. Since there is no way we can service an incoming 
task which requests an n-cube or even an (n — l)-cube 
in a faulty hypercube, we will double (or quadruple) the 
residence time of the incoming task and reduce the sub¬ 
cube size by one dimension (or by two). This gives a 
fair comparison and indicates the impact of faults on 
the performance of the subcube allocation strategy. 

In the experiments, K faults are generated 20 times 
with K > 2. For each K faults, 100 incoming tasks are 
generated and queued. The dimensions of the requested 
size by the incoming tasks are assumed to follow a given 
distribution such as uniform and normal distributions. 
The residence time of the allocated subcube, is assumed 
to be uniformly distributed. In our experiments, the 
residence tit■io is kept as uniform(5, 11). Let pi be the 
probability iiiat an incoming task requests a subcube of 
size i, for 0 < i < D where D is the size of the system. 
Thus we have ∑Pi = l∙ The Pi's{po■■Ps) for normal 
distribution used in our experiments are (.0228, .044, 
.919, .1498, .383, .1498, .919, .044, .0228). 

The service discipline of the system is assumed to be 
first come first served (FCFS). At each time unit, the 
system attempts to find a fault-free subcube of the re¬ 
quested size to the first task in the queue and the as¬ 
signed task is removed from the queue. After an incom¬ 
ing task in the system finishes, the subcube assigned to it 
is released. The process continues until all the 100 tasks 
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are finished. Under the above simulation model, the per¬ 
formance is measured in terms of completion time. For 
each K faults, 20 independent runs are performed. The 
average of these parameters for 20 runs are computed 
and are used in the plots. 

Based on Buddy strategy, Fig.4 shows the comple¬ 
tion time in the 8-cube with 2 to 12 faults and with 
uniform distribution of requested sizes. We can see 
that the performance of allocating irregular subcubes 
is always better than allocating regular subcubes. The 
pessimistic irregular approach is slightly worse than the 
irregular approach. This indicates that bigger subcubes 
play an important role in the allocation process since 
the pessimistic approach does not lose much bigger sub¬ 
cubes, especially the biggest possible available subcube, 
(n— l)-cube. Notice that no fault split approach does not 
work better than no fault approach since there is equal 
chance that an incoming task requests n-cube and no 
fault split approach assigns an (n — l)-cube with double 
the residence time. Fig.5 shows similar results. 

6 Final Remarks 
Wormhole routing, currently employed in commercial 

hypercube multiprocessors, is considered in constructing 
subcubes in the presence of faults. As long as the links of 
an irregular subcube assigned to one task are not shared 
by other subcubes, the performance of the task execu¬ 
tion will be the same as the tasks running in the regu¬ 
lar subcubes. This is because the subcubes generated by 
the modified subcube partitioning technique are disjoint. 
We developed a two-phase fault tolerant subcube alloca¬ 
tion strategy which is general enough to apply to any 
existing fault-free subcube allocation strategy. The two-
phase approach also improves the performance of larger 
fault-free hypercube systems. The extensive simulation 
results show that our approach always performs better 
than others. 
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Figure 4: Completion time of Buddy strategy. Figure 5: Completion time of Buddy strategy. 
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