
1993 International Conference on Parallel Processing

Fault Tolerant Subcube Allocation in Hypercubes

Yeimkuan Chang and Laxmi N. Bhuyan
Department of Computer Science, Texas A&M University

College Station, Texas 77843-3112

Abstract - The subcube allocation problem in faulty
hypercubes is studied in this paper. An efficient method
for forming the set of regular subcubes is proposed. A
concept of irregular subcubes is then introduced to take
advantage of the advanced switching techniques such as
wormhole routing to increase the size of available sub¬
cubes. In this paper, a two-phase fault tolerant subcube
allocation strategy is proposed. The first phase is the re¬
configuration process based on a modified subcube parti¬
tioning technique which finds the set of disjoint subcubes
in the faulty hypercube. The second phase is to apply
an existing fault-free subcube allocation strategy such as
Buddy strategy to each disjoint subcube for assigning the
fault-free available subcubes to the incoming tasks. The
simulation results using Buddy strategy are also given.

1 Introduction
Hypercube architectures have received much attention

due to their attractive properties, such as regularity, scal-
ibility, fault tolerance, and multitasking capability. As
the size of the system grows, the probability of some pro¬
cessors or links failing in the system becomes larger. In
a normal situation, many parallel programs are executed
concurrently in different subcubes allocated by the host
system. In this paper, we study how to allocate subcubes
in a faulty hypercube and thus maintain the multitasking
capability of the system.

The main idea in assigning subcubes to incoming tasks
is to avoid the interference among different tasks. This
allocation problem of hypercubes has been studied in the
literature. It was introduced by Chen and Shin [1]. Many
other researchers use different approaches to tackle the
problem[2, 3, 4]. Parallel algorithms for hypercube allo¬
cation have been developed in [5, 6]. The full subcube
recognition ability and the efficiency of the allocation
algorithms are the two main issues in hypercube alloca¬
tion. In this paper, we address this allocation problem
for a system with faults.

The straightforward method to accomplish fault toler¬
ant subcube allocation is to use the concept of exclusion.
In other words, the faulty processors are treated as be¬
ing allocated permanently. To improve on the above ap¬
proach, Jokanovic et al. [7] propose a two-phase fault
tolerant gray code (FTGC) strategy. FTGC is based
on the observations that in a fault-free hypercube, the
left half of the system becomes more fragmented than
the right half since the GC strategy takes a first-fit ap¬
proach. Therefore in FTGC, the first phase is to find a
parameter sequence [1, 7] such that the distribution of
the faulty processors is concentrated to the left as much
as possible. The second phase is to apply the same allo¬
cation and deallocation procedures of the GC strategy.

We consider wormhole routing in addition to store-

and-forward routing. The wormhole routing employed in
current commercial n-cube systems [8, 9] has the prop¬
erty that communication delay is insensitive to the phys¬
ical distance provided that there is no interference on the
communicating links. We provide results both with and
without wormhole routing property. It is assumed that
all the faults are static and are detected before the recon¬
figuration algorithm starts. We assume only node faults
and as a result, the links incident on the faulty nodes
are also faulty. The faulty nodes can not perform either
computation or communication.

We present a modified subcube partitioning strategy
and discuss how to construct the subcubes in a hyper¬
cube with two faults, since in the worst case, two faults
in an n-cube are sufficient to destroy every possible reg¬
ular (n — l)-cubes. The technique first selects a regular
(n— l)-cube and then the faulty processor in the selected
(n — l)-cube is replaced with its corresponding healthy
processor in the other (n — l)-cube. We then extend
the results to more than 2 faults and show that at least
\TJ■~\ faults can be tolerated while maintaining a fault-free
(n — l)-cube [10]. We carry out extensive simulation to
find the probability of a healthy (n — l)-cube in an n-
cube system as a function of the number of faults. It is
shown that the modified subcube partitioning technique
performs better than the method which only searches for
the regular subcubes.

Finally, we use the above modified subcube partition¬
ing technique to develop a two-phase fault-tolerant sub¬
cube allocation strategy. The first phase is to construct
the set of disjoint subcubes in a faulty hypercube ac¬
cording to our modified subcube partitioning technique.
The second phase is to apply an existing fault-free sub¬
cube allocation strategy such as Buddy strategy to each
disjoint subcube. We simulate our fault tolerant alloca¬
tion strategy based on Buddy strategy. The simulation
results show that the fault tolerant subcube allocation
strategy based on the modified subcube partitioning is
always better than the others.

The rest of the paper is organized as follows. An ef¬
ficient construction method of regular subcubes is pro¬
posed in section 2. In section 3, the concept of irregular
subcube is introduced. The modified subcube partition¬
ing technique is proposed to take advantage of wormhole
routing technique. In section 4, a two-phase fault toler¬
ant subcube allocation strategy is presented. Simulation
results are given in section 5. Finally, the concluding
remarks are given in the last section.

2 Construction of Regular Subcubes
We first present an efficient method to construct the

set of disjoint subcubes in a faulty hypercube. The con¬
struction of the set of disjoint regular subcubes (SDS) is

I-132
Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

1993 International Conference on Parallel Processing

described in the procedure Form_SDS as follows.
Procedure FormJ3DS(n, F)
/* n: size of hypercube and F: set of faults */
begin

d := Form_Regular-n_:Lcube(ri,.F,.Fo,^i);
if |.Pol = 0 then

SDS := SDS U *n-∙■-10*'■;
else FormJ3DS(n - 1,FO);
if \Fx\ = 0 then

SDS := SDSU ^-^W;
else FormJSDS(n -l,F↑);

end
The procedure Form_Regular_n_l_cube finds a dimen¬

sion d at which the n-cube is divided into two (n — 1)-
cubes such that the difference of the numbers of the
faulty nodes in these two (n — l)-cubes is the maximum.
If there is a tie, we will solve it as follows. Let Qi be the
(n — l)-cube in which the number of faults is less than
that in the other (n — l)-cube. We define the weight of a
faulty processor in a hypercube as the number of neigh¬
bors which are also faulty and the system weight of the
hypercube as the sum of the weights of all the faulty pro¬
cessors in the same hypercube. Let the system weight of
Qi be W(. The dimension i is selected if Wj > Wj for
all j 6 {0,.., n — 1}. If there is a tie for W, again, we
arbitrarily select one dimension.

Example 1: Fig.l shows a 4-cube containing 5 faulty
nodes marked as shaded circles. Fig.l(a) and (b) illus¬
trates that the 4-cube is split into two 3-cubes at dimen¬
sion 3 and 1, respectively. Thus dimension 3 is selected
for split instead of dimension 1 since the system weight
of Qz is 2 which is greater than the system weight, 0,
of Qi. After the dimension d is selected, the procedure
FormJSDS is continued for each (n — l)-cube until the
subcube contains no faults or all the processors in the
subcube are faulty.

The time complexity of FormJSDS is 0(|.F| × n3) since
Form_Regular_ra_l_cube takes O(|F| × n2) time units for
each dimension and there are n dimensions. We shall see
that the split and select process does not guarantee to
find the maximum set of subcubes (MSS) introduced in
[2]. However, our method shown in procedure FormJSDS
is efficient whereas finding the MSS is an NP-hard prob¬
lem.

Let us analyze the worst case number of faults that
procedure FormJSDS can tolerate in order to maintain a
fault-free (n — m— l)-cube. After calling FormJSDS once,
there exists an (n — l)-cube containing at most |_ 2 J
faulty nodes. Thus FormJSDS can continue m times until
the finally selected (n — m)-cube contains only one fault,
when \F\ < 2m. Obviously, a fault-free (n — m— l)-cube
is available in an n-cube containing |JF"| < 2m faults, for
n>m + l.

3 Construction of irregular subcubes
We introduce the concept of irregular subcubes to take

advantage of the advanced routing technology such as
wormhole routing currently used in the commercial hy¬
percube multiprocessors [8, 9]. We define an irregular
subcube as a hypercube in which there exists one or more
pairs of logically adjacent nodes such that the physical
distance between the adjacent nodes is more than one.

14 15

Figure 1: Construction of regular subcubes.

Due to wormhole routing, the communication speed be¬
tween the logically adjacent nodes is the same as that
between a set of physically adjacent nodes [8, 9]. A reg¬
ular subcube can be embedded on an irregular subcube
such that the load of the embedding is one and dilation
of the embedding is equal to the maximum physical dis¬
tance between the adjacent nodes.

We will briefly review the modified1 subcube partition¬
ing technique which constructs the irregular subcubes.
Modified Subcube Partitioning
The idea of modified subcube partitioning comes from
how to utilize the unused links to achieve fault tolerance
in the faulty hypercube. We shall see that the modi¬
fied subcube partitioning technique tolerates more faults
than only allocating regular subcubes.

The procedure of constructing an irregular subcube
based on modified subcube partitioning is as follows. An
(n - l)-cube is first selected in the faulty hypercube.
Then the faulty processor in the selected (n — l)-cube is
replaced by the corresponding processor in the adjacent
(n — l)-cube. The replacing processor and its neighbors
must work since the links between it and its neighbors
are utilized in the reconfiguration process. We shall see
that this reconfiguration process works as long as the
nodes which are two or fewer hops from any faulty node
of the selected (n — l)-cube, are healthy. The worst case
of two faults being at antipodal positions can be solved
by the modified subcube partitioning technique. The
following example shows how the technique is applied to
the 2-fault case.

Example 2: Assume there are two faulty nodes at
antipodal positions of a 4-cube, i.e. (0000) and (1111)
as shown in Fig.2. First, the node (1111) is replaced
by node (0111). An irregular 3-cube is formed by the
links shown as bold lines and the nodes marked with
label 3 in parentheses. We call nodes 0011, 0101, and
0110 as the intermediate nodes of the irregular 3-cube
since they reside in between node 0111 and its logical
neighbors of the irregular 3-cube. If the intermediate
nodes can be used for forming other subcubes, then one
2-cube consisting of nodes 0011, 0100, 0101, and 0110

'called modified in order to distinguish the subcube partitioning
technique proposed in [11]

1-133 Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

1993 International Conference on Parallel Processing

Figure 3: Probabilities of fault-free 7-cubes in an 8-cube
with faults.

and two 0-cubes, 0001 and 0010, can be constructed as
shown in the figure. However, if the intermediate nodes
can not be used, the nodes 0001, 0010, and 0100 and the
intermediate nodes can be used only as 0-cubes.

We call the assumption that the intermediate pro¬
cessors can not be used to form other disjoint sub¬
cubes to be pessimistic. However, in all the commercial
hypercubes[8, 9], there are two kinds of processing units
in a processor node, namely, a communication unit and a
computation unit. Inside the communication unit, there
is an (n + 1) × (n + 1) crossbar switch. For a message,
there will be no delay in the switch if no other message
competes for the same output. Thus the intermediate
nodes can still be used for other tasks as long as there
are no shared links with other tasks.

The time complexity of the modified subcube parti¬
tioning technique to find an (n — l)-cube is given as fol¬
lows. Let ƒ be number of faults. For any dimension i,
the faulty nodes are divided into two groups. The faulty
node whose ith bit value is zero is assigned to group
1, otherwise it is assigned to group 2. Next, the Ham¬
ming distances of any fault in group 1 and any fault in
group 2 are computed. Each Hamming distance takes n
time units. There are at most O(ƒ2) Hamming distances.
Thus the time complexity leads to O(f2 × n).
Simulation Results
Finding a fault-free (n — l)-cube in an n-cube containing
a certain number of faulty nodes is the objective of our
experiments. We carry out the simulation experiments
by randomly generating faults in an n-cube. The proba¬
bilities of recognizing regular (n—l)-cubes (section 2) are
compared with the probabilities of recognizing irregular
and regular (n— l)-cubes based on the modified subcube
partitioning technique.

Fig.3 shows the comparison of probabilities of recog¬

nizing fault-free 7-cubes in an 8-cube with 2 to 22 faults.
We can see that when the number of faulty nodes exceeds
5, the probability of successful recognition of regular 7-
cubes drops under 50%. The probability of successful
recognition of regular 7-cubes drops to 0 when the num¬
ber of faulty nodes reaches 10. However, the probability
of successful recognition of fault-free irregular 7-cubes
drops to 0 wh∙n the number of faulty nodes reaches 20.

4 Subcube Allocation
We have seen that |~|■] faults can be tolerated in the

worst case by the modified subcube partitioning tech¬
nique while maintaining a fault-free (n — l)-cube. How¬
ever, the simulation results show that in the average case,
more faults can be tolerated in larger systems. In this
section, we propose a two-phase fault tolerant subcube
allocation strategy which allocates the regular and irreg¬
ular subcubes. Since the faults do not occur as frequently
as the processors are allocated in the system, we assume
that the faults are detected and located before the con¬
struction starts.

The first phase is the construction of the set of disjoint
subcubes by the modified subcube partitioning tech¬
nique. The second phase is to sort the disjoint subcubes
by their sizes in an increasing order and apply the exist¬
ing fault-free subcube allocation strategy such as Buddy
strategy etc. to each disjoint subcube. When an in¬
coming task requesting a d-cube arrives in the system,
starting from d-cube of the sorted disjoint subcubes, an
available d-cube is searched and assigned to the incoming
task.
Subcube Construction Phase
The algorithm Find_Disjoint_Subcubes for constructing
the set of disjoint regular and irregular subcubes in a
faulty hypercube is presented as follows. If the number
of faults, |F|, is equal to the number of processors in
the system then the process stops. Otherwise the pro¬
cedure Find_n_l_cube described later is called to find an
available (n — l)-cube. If an (n — l)-cube exists, the
set F of faulty processors is updated. The number of
faults remains the same and the fault-free (n — l)-cube
is put in Disjoint_Set. Finally, Find_Disjoint_Subcubes is
called recursively with the dimension decreased by one.
If an (n — l)-cube does not exist , then Split_n_cube is
called to find a dimension at which the n-cube is split
into two (n — l)-cubes such that the difference between
the numbers of faulty processors in the two (n — l)-cubes
is maximum. If the sets of faults in the two (n — l)-cubes
are in Fo and F\, then two Find-Disjoint .Subcubes are
called recursively for Fo and Fi.

I-134

Figure 2: Subcube allocations of 4-cube with 2 faults.

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

1993 International Conference on Parallel Processing

Find_7i_l_cube first checks if there exists a regular
(n — l)-cube, i.e. if there exists a dimension i such that
the ith bit values of the addresses of faulty nodes are
all O's or all l's. If there exists an (n — l)-cube, the
dimension i is put in P which is the set of dimensions
that have been processed. The found (n — l)-cube is
then returned. Otherwise, the irregular (n - l)-cube is
searched according to the modified subcube partition¬
ing technique. Hamming distances of addresses of any
two faulty nodes are computed. For each pair of faulty
nodes fi and fj whose Hamming distance is 1 or 2, we
computes the dimensions spanning ƒt■ and fj and puts
them into Dim_Set. If there exists a dimension i which
does not belong to P and DimSet, then i is put in P
and the (n — l)-cube is constructed by the procedure
construct_n_l_cube(n, F, i) as follows. The n-cube is
split into two (n — l)-cubes along the dimension i. One
(n — l)-cube is selected and the faults in the selected
(n — l)-cube is replaced with the healthy processors in
the other (n —l)-cube. To update the set of faults, F, the
ith bits of the addresses of faults in the selected (n — 1)-
cube is complemented. The following example illustrates
the construction process of procedure Find_n_l_cube.

Example 3: Based on Fig.2, there are two faults, 0 and
15 in the 4-cube. There is no regular 3-cube available
since the two faults are at antipodal positions. Since
the Hamming distance between the two faults is 4, any
dimension from 0 to 3 can be selected for constructing
the irregular 3-cube by procedure construct_n_l_cube.

When Find_Disjoint_Subcubes finishes, Disjoint_Set
contains all the fault-free disjoint subcubes. The last
step is to sort the Disjoint_Set by the size of the sub¬
cubes.
Subcube Allocation Phase
We gives the procedure FT_Subcube_Allocation, for fault
tolerant subcube allocation as follows. The procedure
checks each subcube in the set of disjoint subcubes, Dis-
jointJSet, from the smallest subcube to the largest sub¬
cube and uses the existing fault-free subcube allocation
strategy to allocate an available subcube from the set
of disjoint subcubes. The deallocation procedure does
not change except that the subcubes are released to the
disjoint subcube from which they were allocated.

Procedure FT_Subcube_Allocation(n, d)
/* d: size of requested subcube*/
begin

for all Qi G DisjointJSet, from i = 1 to
\DisjointSet\ do

if \Qi\ > dthen
Qd := Fault_Free_Subcube_Alloc(<3,∙, d);
if Qd ≠ Null then return (Qd)\

endif
endfor
return (Null);

end
Example 4: Assume there are two faults in a 4-cube

as in Fig.2. Procedure Find_Disjoint_Subcubes returns
DisjointJSet = { ‰ ‰ ‰ Q a } or {Qo,Qo,Qo,Qo,Qi,Q3}
if the intermediate nodes such as nodes 0011, 0101, and
0110 can not be used for forming subcubes except being
used as 0-cubes. Take Buddy strategy as the dedicated
allocation strategy. Assume that the incoming task se¬
quence is {1,1,0,3}. For former case, two 1-cubes in Qi,

a 0-cube in QO, and a 3-cube in Qo, will be granted. How¬
ever, for the later case, a 1-cube in Qi, a 1-cube in Qz,
and a 0-cube in Qo are granted. The incoming task re¬
questing a 3-cube needs to wait for the other tasks to
finish.
5 Subcube Allocation Simulation

Performance based on the Buddy and single GC
strategies is studied. We select the Buddy and single
GC strategies because Buddy strategy is currently em¬
ployed in the commercial hypercube multiprocessors and
the single GC strategy is simple to implement. The fol¬
lowing allocation strategies are adopted in the simula¬
tion.

1. the straightforward regular allocation strategy
which treats the faulty processors as being allocated
permanently,

2. the modified regular subcube allocation strategy
which is based on the procedure Form_SDS proposed
in section 2.

3. irregular subcube allocation strategy which is
based on our two-phase fault tolerant subcube al¬
location strategy in section 4,

4. pessimistic irregular subcube allocation strategy
which is same as the irregular except that the inter¬
mediate nodes can not be used to form other disjoint
subcubes. However, the intermediate nodes can be
assigned as individual 0-cubes.

The simulations on the two systems without any fault
are also conducted for comparison. One follows the ex¬
isting allocation strategy (called no fault) and the other
is the two-phase fault-free allocation strategy called no
fault split. The latter is motivated by the observation
[7] that the left half of the system is more fragmented
than the right half in the first-fit allocation approaches.
The first phase is to split the n-cube into a set of sub¬
cubes, one fc-cube for 1 < k < n — 1 and two 0-cubes.
The second phase is the same as the one for irregular sub¬
cubes. Since there is no way we can service an incoming
task which requests an n-cube or even an (n — l)-cube
in a faulty hypercube, we will double (or quadruple) the
residence time of the incoming task and reduce the sub¬
cube size by one dimension (or by two). This gives a
fair comparison and indicates the impact of faults on
the performance of the subcube allocation strategy.

In the experiments, K faults are generated 20 times
with K > 2. For each K faults, 100 incoming tasks are
generated and queued. The dimensions of the requested
size by the incoming tasks are assumed to follow a given
distribution such as uniform and normal distributions.
The residence time of the allocated subcube, is assumed
to be uniformly distributed. In our experiments, the
residence tit■io is kept as uniform(5, 11). Let pi be the
probability iiiat an incoming task requests a subcube of
size i, for 0 < i < D where D is the size of the system.
Thus we have ∑Pi = l∙ The Pi's{po■■Ps) for normal
distribution used in our experiments are (.0228, .044,
.919, .1498, .383, .1498, .919, .044, .0228).

The service discipline of the system is assumed to be
first come first served (FCFS). At each time unit, the
system attempts to find a fault-free subcube of the re¬
quested size to the first task in the queue and the as¬
signed task is removed from the queue. After an incom¬
ing task in the system finishes, the subcube assigned to it
is released. The process continues until all the 100 tasks

1-135
Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

1993 International Conference on Parallel Processing

are finished. Under the above simulation model, the per¬
formance is measured in terms of completion time. For
each K faults, 20 independent runs are performed. The
average of these parameters for 20 runs are computed
and are used in the plots.

Based on Buddy strategy, Fig.4 shows the comple¬
tion time in the 8-cube with 2 to 12 faults and with
uniform distribution of requested sizes. We can see
that the performance of allocating irregular subcubes
is always better than allocating regular subcubes. The
pessimistic irregular approach is slightly worse than the
irregular approach. This indicates that bigger subcubes
play an important role in the allocation process since
the pessimistic approach does not lose much bigger sub¬
cubes, especially the biggest possible available subcube,
(n— l)-cube. Notice that no fault split approach does not
work better than no fault approach since there is equal
chance that an incoming task requests n-cube and no
fault split approach assigns an (n — l)-cube with double
the residence time. Fig.5 shows similar results.

6 Final Remarks
Wormhole routing, currently employed in commercial

hypercube multiprocessors, is considered in constructing
subcubes in the presence of faults. As long as the links of
an irregular subcube assigned to one task are not shared
by other subcubes, the performance of the task execu¬
tion will be the same as the tasks running in the regu¬
lar subcubes. This is because the subcubes generated by
the modified subcube partitioning technique are disjoint.
We developed a two-phase fault tolerant subcube alloca¬
tion strategy which is general enough to apply to any
existing fault-free subcube allocation strategy. The two-
phase approach also improves the performance of larger
fault-free hypercube systems. The extensive simulation
results show that our approach always performs better
than others.

References
[1] M. S. Chen and K. G. Shin, "Processor Allocation

in an N-Cube Multiprocessor Using Gray Codes,"
IEEE Transactions on Computers, pp. 1396-1407,
Dec. 1987.

[2] S. Dutt and J. P. Hayes, "Subcube Allocation in Hy¬
percube Computers," IEEE Transactions on Com¬
puters, pp. 341-351, March 1991.

[3] J. Kim, C. R. Das, and W. Lin, "A Top-down pro¬
cessor Allocation scheme for hypercube Comput¬
ers," IEEE Transactions on Parallel and Distributed
Systems, pp. 20-30, January 1991.

[4] P. J. Chuang and N. F. Tzeng, "A Fast Recognition-
Compkle Processor Allocation Strategy for Hyper¬
cube Computers," IEEE Transactions on Comput¬
ers, pp. 467-479, April 1992.

[5] Y. Chang and L. N. Bhuyan, "Parallel Algorithms
for Hypercube Allocation," In International Parallel
Processing Symposium(IPPS), April 1993.

[6] M. Livingston and Q. F. Stout, "Parallel Alloca¬
tion Algorithms for Hypercubes and Meshes," In
Proceedings of 4th Hypercube Concurrent Comput¬
ers and Applications, 1989.

[7] D. Jokanovic, N. Shiratori, and S. Noguchi, "Fault
Tolerant Processor Allocation in Hypercube Multi¬
processors," Japan's IEICE Transactions, vol. E 74,
no. 10, pp. 3492-3505, Oct. 1991.

[8] nCUBE Corporation, nCUBE 2 Processor Manual,
nCUBE Corporation, Dec. 1990.

[9] Intel, Intel iPSC/S, Intel Scientific Computers,
1988.

[10] Y. Chang and L. N. Bhuyan, "Constructing Sub¬
cubes in Faulty Hypercubes," Technical report,
Texas A&M University, 1992.

[11] J. Bruck, R. Cypher, and D. Soroker, "Tolerat¬
ing Faults in Hypercubes Using Subcube Partition¬
ing," IEEE Transactions on Computers, pp. 599-
605, May 1992.

I-136

Figure 4: Completion time of Buddy strategy. Figure 5: Completion time of Buddy strategy.

Proceedings of the International Conference on Parallel Processing (ICPP'93)
0-8493-8983-6/0-7 $20.00 © 1993

